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IDENTIFIABLE SURFACES IN CONSTRAINED OPTIMIZATION"

STEPHEN J. WRIGHT!

Abstract. The concept of a “class-CP identifiable surface” of a convex set in Euclidean space
in introduced. We show how the smoothness of these surfaces is related to the smoothness of the
projection operator, and present finite identification results for certain algorithms for minimization
of a function over this set. The work uses a partially geometric view of constrained optimization to
generalize previous finite identification results.
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1. Introduction. Here, we investigate the problem

(1) min F'(z),

where F' is continuously differentiable, and Q C R” is closed and convex. In particular,
we are interested in finding subsets of 2 that can be identified by an optimization
algorithm after a finite number of iterations. That is, if the solution z* lies in one such
subset, the iterates generated by the algorithm should eventually enter and remain
within that subset. In the case in which  is defined by a set of algebraic inequalities,
this property of the iterates corresponds to identifying the active constraints, and
when € is a polyhedron, it means identifying the edge, or corner, upon which the
solution z* lies.

The first-order conditions for #* to be a solution of (1) are

—VF(z") € N(z"),

where N(z*) is the normal cone to © at #*. To prove the finite identification (“cap-
ture”) results, we assume a nondegeneracy condition due to Dunn [3]. This is stated
simply as

(2) — VF(2") eri(N(27)),

where 1i(A) is the relative interior of A C R", that is, the interior of A relative to
aff(A), the affine hull of A. This condition, which is a geometric generalization of
the strict complementarity condition of nonlinear programming, has been used in the
convergence analysis of Dunn [3] and Burke and Moré [1]. Both these papers specify
similar classes of subsets of €2 that are finitely identifiable by gradient projection and
Newton-like algorithms. We define these “open facets” as in [3]:

DEFINITION 1.

a) For any closed conver cone K C R", we use K° to denote the polar of K, and
define the lineality lin(K) to be (K°)*t;

b) Let T(x) and N(x) denote the tangent and normal cones, respectively, to
at z, as defined in Clarke [2]. A nonemply subsel S C € is an open facel if the sel
V = o+ lin(T'(x)) is independent of x € S, and S = inty (2N V), where inty(.)

denotes interior with respect to V.
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It is easy to show that open facets are convex. When €2 is polyhedral, it can be
partitioned into open facets, but when €2 has some curved boundaries, this is not the
case. As an example, consider the set defined in [1, equation (2.2)]:

Q= {(&1,&) | & < /1-€F, 0< & <1}

The open facets in this set are its interior, the point (0, 1) and the edges {(0,£&3) | 2 <
1} and {(1,€2) | &2 < 0}. No subset of the curved face {(£1,&) | € +¢&2 =1, 0 <
&1 < 1} satisfies Definition 1.

When 2 is defined by algebraic inequalities, that is,

it is often assumed that the g; are C? and that the set
(1) {Vg(z)|ie A2}, where Alz)={i|1<i<m, g;(x) =0}

is linearly independent. In this case, the nondegeneracy condition (2) (which reduces
to the standard strict complementarity condition) ensures that surfaces defined by a
particular active index set A C {1,2, -, m} are finitely identifiable by a number of
standard algorithms. Note that © is not definable in the form (3),(4) for ¢; € C?,
since there is a curvature discontinuity in the boundary at (1,0). If we allow g; to be
only C*, then Q; is definable as (3),(4), but then the curved surface is indistinguishable
from the face {(1,£2) | &2 < 0}.

In the next section, we define the concept of a “class-C? identifiable surface.”
Loosely speaking, such a surface S is usually a connected “patch” on 9 which is
locally parametrizable by a collection of C? functions, for some integer p > 1. (The
interior of € is defined to be a class-C® surface.) Moreover, these functions can be
defined so that their gradients can “enclose” any given ray in the relative interior
of N(x), where x is a given point in S. We prove that open facets, and subsets of
(3) that are defined by particular choices of A, are identifiable surfaces. (For the
set 21, the curved boundary, with its two endpoints excluded, is also an identifiable
surface.) We show that class-C? identifiable surfaces generate connected open regions
in the exterior of {2, within which the operation of projection onto Q is p — 1 times
continuously differentiable. In Section 3, we prove finite identification results for
gradient projection and Newton-like algorithms.

In the remainder of the paper, ||.|| denotes the Euclidean norm. P denotes the
projection operator; that is, § = P(y) solves

I DR
min o[y — vl

(The notation y = P(y) is used frequently.) B denotes the unit ball {£ € R™ | ||¢]| <
1}, and co(.) denotes the convex hull of a set of vectors.

2. Identifiable Surfaces and Smoothness of the Projection Operator.
Throughout the remainder of the paper, we make the following assumption:
AssuMPTION 1. Q is closed and conver and has an interior in R®.
The last part of this assumption is made for convenience. If it does not hold, the
results of this section can be recovered by restricting attention to aff(£2).
DEFINITION 2. A connected set S C € is a class-C? identifiable surface, p a
posttive integer, if either
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a) S is an open subset of int(£2), or
b) S C0R, and for any y € R*\Q such that y = P(y) € S and y—y € ri(N(y)),
there exist functions g;, i = 1,---,r = r(y), and a constant ¢ = e(y) > 0
such that
(i) 9; € CP(y +eB);
(ii) {Vgi(9),i=1,---,r} is linearly independent;
(iii) co{Vg;(2),i=1,---,r} C N(Z) for all Z € S(y;¢), and 2 (y+eB)NS;
(iv) y—y erifco{Vg(y),i=1,---,r}]; and
(v) S(Q,E) = {5 | ||2_§|| <€ gi(,?) = Oa i= 1,~",7°}. B
Obviously, if S is a class-C? identifiable surface, then it is also a class-C? identi-
fiable surface, for any p with 1 < p < p.
In what follows, we frequently use the notation

Vy(x) = [Var(2)] - [Vgr(x)].

Before proceeding, to give a “feel” for how this definition differs from that of
open facets and from (3), we review the example Q; from section 1, and give two
more examples. The interior of €1, the point (0, 1) and the edge {(0,£&2) | €2 < 1} are
class-C'™ identifiable surfaces. The remaining surface defined by

{(€1,&2) [ =1/1-¢7, 0< & <1} N {(1,&) & <0} n {(1,0)}

is class-C'! identifiable. Each of the first two component subsets is class-C°® identifi-
able.

. . . 3 . ..
Another example is an inverted cone in R”, whose apex is at the origin:

Qo ={(&1,82,83) | &8 > £ /EE + &3, 0 < &3 < 1},

Q5 has just three maximal open facets: the point (0,0,0), the circular face {(£1,&2,1) | €7+
&3 < 1}, and the interior. A finite algebraic parametrization (3),(4) is apparently not
possible, even if we allow g; € C! (the difficulty is, of course, at the apex). However,
the whole set can be partitioned into five maximal class-C'™ identifiable surfaces.
They are the three open facets just mentioned, the circle {(&1,&s,1) | €7 + €2 = 1},
and the curved face {(£1,82,83) | &3 = V€7 + €2, 0 < €3 < 1}. To show how the
definition is satisfied in the case of (0,0,0), take some y € int(N(0,0,0)). Then

vy = (y1,¥2,v3), with y3 < —y/y? +y2. Clearly, we can choose ¥ > 0 such that
y+ yB C int(N(0,0,0)). Define three vectors as follows:

?

v o= (47, 98)
v = (= (12,5 + (V3/2)7,9s)
v = (= (/27,9 — (V3/2)7, ).
Elementary manipulation shows that these are linearly independent and that y =
(1/3)(y™D) 4 y'2) 4+ y3)). If we define g;(z) = 27y, the five conditions in Definition
2 are easily verified.
A final example is the set

Qs = {(61,60,63) | & > & + |6 + 637},

This set is representable in the form (3),(4) by splitting the inequality into two (for
the two possibilities |¢2] = £&;), but the g; are only C''. There are no open facets,
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except the interior. However, the set can be partitioned into four class-C'*® identifiable
surfaces. These are the interior, the face defined by

{(€1,62,&3) | €2 >0, &3 = €7 + & +5§/3}

and its counterpart

{(€1,62,&3) | €2 <0, &3 = &7 — & +5§/3},
and the ridge

{(61,0,&) | &5 = €7}
The ridge can be made to fit the definition by taking

g1(6) = E+&6-&
9206) = & & —&5,

independently of the choice of y € ri(N(£)).

The concept of a class-C? identifiable surface 1s, in a certain sense, a general-
ization of the concept of a class-CP® boundary of a bounded domain Q@ C R", as
used extensively in the theory of partial differential equations (see, for example, the
definition on page 94 of Gilbarg and Trudinger [6]). In fact, if Q is convex, closed
and bounded, and its boundary 9 is of class-CP'% according to the latter definition,
then it can be partitioned into a class-C'* identifiable surface (int(€2)) and a class-C?
identifiable surface (9€2). Such sets have no “edges” or “corners” — the value of r
corresponding to each y € R*\§2 is 1 — and hence they are not very interesting from
the viewpoint of this paper.

We now derive some elementary properties of identifiable surfaces, and the func-
tions ¢; that are used to describe them. We focus on the case S C 0%, since the
corresponding results for S C int(§2) are trivial.

LEMMA 2.1. Let S be a class-C? identifiable surface with S C 02 and p > 1, and
let y € R'\Q be such that y = P(y) € S and y — y € ri(N(y)). Suppose that r = r(y)
and that the g;, i =1,---,r are chosen as i Definition 2. Then

(i) Ts(y) = {s | s'Vgi(y) =0, i = 1,---,r}, where Ts(.) is the tangent cone
with respect to S, as defined in [2];

(i6) lin(T(g))* = afl(N (3)) = span{Vg:(3) | i = 1,- -, r} = Ts(5)*; and

(111) if p > 2, the projection of V?g;(y) onto Ts(y) is positive semidefinite.

Proof.

(i) This is a standard result which follows easily from Definition 2.

(ii) We prove the second equality. By Definition 2(iii), span{Vg;(g) | i =1, -, 7} C
aff(N(y)). Since both sets are subspaces, the containment can be strict only if
there is some v € aff(N(g)) with v # 0 such that v"Vg;(y) =0, i=1,---,r,
that is, v € Tg(y). Clearly, also, —v € Ts(y). Since Ts(y) C T(y), it fol-
lows that v and —v are in T(y), and hence v € lin(T(y)) = N(y)*. Hence
0 # v € aff(N(y)) N N(y)1, giving a contradiction. The remaining equalities
follow from part (i) of the Theorem and

lin(T(y)) = N(y)* = aff(N ()" = Ts ().

(iii) Let v € Ts(y), and suppose for contradiction that v V2g;(y)v < 0. There
are sequences v; — v and {t;} with 0 <¢; € R, t; — 0, such that y+¢;v; €
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S C Q, SO gz(g‘i‘t]U]) =0,¢2=1,---,7r. Since vgl(g) c N(g), we have
Vai(y)tjv; <0, and so
0 = gi(y+tv5)

i , 1 )
9i(9) + V()T (tv;) + SRARAILE

where ¢; € [¢, 7+ tjv;]. Hence

N 2 _
vi V2gi(0;)vj = —th]'TVgi(y) > 0.
J

For j sufficiently large,
1
0> §vTV2gi(gj)v > U]»Tvzgi(f}]’)vj > 0,

giving a contradiction.
n
The next result, which will be useful when we come to prove finite identification
properties for constrained optimization algorithms, shows that the direct sum of an
identifiable surface S and the relative interior of the normal cones along S, is a set
that is open in R*. This property is analogous to that described for open facets in
Theorem 2.8 of Burke and Moré [1].
LEMMA 2.2. Suppose that S is as in Lemma 2.1 with p > 2. Define the set

K={z4+w|zeS weri(N(z))}.
For each y € K, there is a § € (0,¢(y)] such that y+ 6B C K, that is, K is open in
R".
Proof. Given y, let r = r(y), ¢ = €(y), and ¢;, ¢ = 1,---,7 be chosen as in

Definition 2. Initially, choose §; > 0 such that §; < ¢ and y+ § BN Q = 0. Choose
some u € y+ 61 B. Then 4 = P(u) solves

1 RS I
min 5 |ju — all3 = min 5l —allz.

Since P(.) is nonexpansive, ||u — g|| < 8§ < e. Suppose for the moment that @ € S.
By Definition 2(v), @ solves

1 2 _ . o

m}n§||u_u||2’ gl(u)zoa 221,~~~,7“, ||u—y||§€
First-order conditions for a solution of this subproblem are that there is A¥ € R" such
that
u—u—Vg(@A* = 0, A* >0,
g(a) = 0, i=1---r

By Definition 2 (ii),(iv),(v), we know that there is A > 0 such that

y—y—Vamr = 0,
(5) 9i(y) 0,

l
-
l
—_
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The implicit function theorem requires that

T+ MV3i(y) V)
Va(y)" 0

be nonsingular and continuous with respect to y and A. This follows from Definition
2(i) and Lemma 2.1(iii). Hence there is § € (0, 8] such that

lu—yll <6 = X>0 [lu—yll<e

By Definition 2(iii), we have found a & € S C Q with v — u € N(4), and so, by
uniqueness of the operation of projection onto a convex set, u = P(u). In fact, since
A% > 0, we have

u—1u €ri(cof{Vyi(a), i=1,---,r}) Cri(N(u)),

and so u € K, as required. [

In the following two results, we show that the notion of an open facet and, for
2 defined by (3),(4), the notion of a set of active indices, can both be expressed in
terms of the notion of an identifiable surface.

THEOREM 2.3. Let S be an open facet in Q. Then S is a class-C'*™ identifiable
surface.

Proof. The case S = int(Q2) is trivially true. Consider S C 9Q. Burke and Moré
[1] show that any open facet S is the relative interior of a quasipolyhedral face. Hence
N(y) and T(y) are the same for all y € S, and

(6) aff(S) = y+ lin(T(y))

forally € 5.

Suppose, as in Definition 2, that we are given some y such that § = P(y) € S and
y—y € ri(N(y)). Then there is a constant v > 0 such that (y—y)+yv € ri(N(y)) for
all v € aff(N(y)) with ||v|]| = 1. Supposing that aff(N(g)) has dimension r, we can
choose unit vectors vy, -+, v,_1, such that {vy, -, v,_1, y—y} is linearly independent
in aff(N(y)), and hence a spanning set. Now set

(v1 4+ +v-1)

Vp = —

r—1
and
Vi =Y — Y+ Y, r=1,--- 7
Clearly, v; € aff(N(y)) and [|o; — (y — 9)|| < ||vi]] <7, s0 ¥ € ri(N(y)), i =1,---,r.

Moreover, we can show that {01, ---,0,} is linearly independent by the following
argument: Suppose there are real coefficients py, - -,y such that > p;0; = 0. Then

0= Zﬂi@i = (Zﬂz)(y -y)+ ’YZMW
i=1 i=1 i=1

(2w =)+ 7 Yl e /7 = D
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By the original choice of vy, -+ v,_1, we must have

Z/’LZIOa /’LZ:/'LT/(T_l)a Zzlaar_la

i=1
and it follows that p; = -~ = p, = 0, as desired. Now define ¢;(2) = (» — y)0;, i =
1,---,r. Conditions (i) and (ii) of Definition 2 are readily verified. Condition (iii)

follows since N(Z) is constant for z € S, and ¢; € ri(N(2)), i = 1,---,r. Condition
(iv) is verified by noting that

|
—
>

r ~
(2 Up
+ —

-y = a7 a8 Aialzla"'a .
y-y=, -1 12 € co{v;, 1 r}

s
1
-

To prove Condition (v), we first take V' = aff(S) in Definition 1, and note that if
g € S, there is € > 0 such that z € aff(S) N (y + ¢B) = Z € S. That is,

Sy =12 12—l < e, € aff(S)} = aff($) O\ (5 + cB).
However, by (6),

aff(S) = y+ lin(T(y)) = 4+ N(9)",

and so,
zeaff(S) & (z—y)lo, =0, i=1,---,r
Hence
Swea={zllz-ull<e g:i(2) =0, i=1,-,r},
as required. [

THEOREM 2.4. Suppose that Q is defined by (3),(4), where g;, i = 1,---,m are
C! functions. Suppose that for some set A C {1,---,m}, the surface S defined by

S={z]gi(z)=0,i€ A, g;(z) >0, i & A}

is a connected subset of Q. Then S is a class-C"' identifiable surface. Moreover, if
9; €CP forie A and p> 2, then S is a class-CP identifiable surface.

Proof. This follows trivially, by identifying ¢;, ¢ € A with ¢;, ¢ = 1,--- 7, in
Definition 2. [

We now consider smoothness of the projection operator P(.). The motivation
for this comes from the work of Holmes [7] and Fitzpatrick and Phelps [5], who
consider closed convex sets with smooth boundaries. In these papers, smoothness of
the boundary is defined in terms of smoothness of the gauge function

pa(z) =inf{t >0 |z €t( —xg) + 20}, for some zg € int(£2),

and the boundary of € is said to be C? if pg is CP in some neighborhood of 0£2.
By showing that this definition is equivalent to a local CP parametrization of the
boundary, Holmes [7] essentially shows that a C? boundary (by the definition above)
is the same as a class-CP° boundary, as defined in [6]. Hence, as discussed earlier,
0 is a class-CT identifiable surface.
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Holmes proves the following result:

THEOREM 2.5. [7, Theorem 2]. If Q has a CP boundary, for p > 2, then the
projection operator P(.) is CP~1 in R*\Q, and P'(y) is invertible in lin(T(P(y))).
Fitzpatrick and Phelps [5, Theorem 3.10] prove the converse.

The case of p = 2 is most interesting. It is a classical result [4, p. 216] that, since
P is Lipschitz continuous, it is differentiable almost everywhere. Below, we extend
Theorem 2.5 to sets with piecewise smooth boundaries; by showing that class-C?
identifiable surfaces generate open regions in R*\Q in which P is CP~1.

THEOREM 2.6. Let S and K be as defined in Lemma 2.2, withp > 2. Then P(.)
is CP~Y on K. Also, P'(y) is invertible in 1in(T(P(y))).

Proof. For any y € K, we can choose € > 0 and § > 0 as in Lemma 2.2 such that,
when u € y + ¢B, P(u) is also the projection of « onto the set {Z | ¢;(2) = 0, i =
1,--,r ||Z2—9|| < €}. Hence we can differentiate the system (5) with respect to y to
obtain

r — _ dy
) T4 3im1 MiV2ai(9) V() ] a

Vo(y) 0 p
where P'(y) = Z—g. The first result follows immediately from (5) and the implicit
function theorem (see, for example, Lang [8, page 125]) by noting that the coefficient
matrix in (7) is nonsingular.

For the second result, let Z € R**("~") be a matrix of full rank such that
Vg(y)¥'Z = 0. By Lemma 2.1(ii), the columns of Z span lin(T(P(y))). The sec-
ond equation in (7) implies that

_dy

Ply) = 3 = 2w

for some W € R**("=7), Multiplying the first equation in (7) by Z7, we find that

7T+ NV zw' =27

i=1

and so

(8) P'(y) = Z[Z"(1+> \Vie:(n) 27 2"

i=1

It follows from (8) and Lemma 2.1(iii) that P’(y) has nonsingular projection onto
lin(T(P(y))). .

We conjecture that the converse of this theorem is also true; that is, if there
is an open connected region K C R*\Q such that P(.)is C?~! on K, and P'(y) is
invertible in lin(T'(P(y))) for each y € K, then P(K) is a class-C? identifiable surface.
The continuity condition alone i1s not sufficient, as an example from Fitzpatrick and
Phelps [5, p. 496] illustrates. Define

Qu = {(€1,6) | & > |G| + 6177}

There is a corner in 4 at (0,0), and the set has four maximal class-C'* identifiable
surfaces: the corner, the interior, and the two edges. Tedious calculation shows that P
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is C* on R*\Q, although 99 is obviously not a class-C? surface. It can be shown that
P/(y) = 0 along the lines {(&1,6) | & = —&1, & > 0} and {(€1,6) | & = &, & < 0},
and so the invertibility condition is not satisfied.

It is clear from (8) that the invertibility condition is related to the boundedness of
the quantities X;V2g;(y) on lin(T'(y)). Note that these quantities are invariant under
scaling of the g;s, that is, if g; is replaced by ag;, then A; becomes A; /.

3. Finite Identification in Constrained Optimization Algorithms. We
turn now to algorithms for solving the optimization problem (1).

In analyzing the gradient projection algorithm, we use the work of Dunn [3, §2],
who gave a framework for proving “capture” results. Dunn states this algorithm as
follows: Choosing constants 1 and 72 with 0 < 71 < 73 < 1, and an initial iterate
xo € £, set

(9) xpp1 = Plag — oV (2)),

where oy is chosen to satisfy

(10) F(l‘k)—F(P(l‘k—VF(l‘k))) >v = o= 1,
(11) F(ey) — F(P(zx — V() <71 = ox €(0,1)
and

F(xg) — F(P(xg — 0x VF(x1)))
(12) NS T F () [or = Plar — onV F(ag))] =

We start with a simple result:

THEOREM 3.1. Suppose that

(i) Assumption I and (2) hold at some point x*;

(ii) VF is continuous at x*;

(iii) x* € S, where S is a class-CP identifiable surface of Q with p > 1;

(iv) there is @ > 0 such that oy, € [7,1] for all k; and

(v) the sequence {xy} generated by (9)-(12) converges to x*.
Then xy € S for all k sufficiently large.

Proof. Define the set K as in Lemma 2.2 Setting y = «* — VF(x*), we can apply
Definition 2 to find é > 0 such that

" —VF(z*)+ 6B C K.
By construction of K, this implies that
" —oVEF(x")+0éBCK for all celo,1].
Now, choose k such that, for all k£ > k,
ek — &[] + [[VF(2r) = VF(7)]| < o6.
Then
lfax = oV ()] — [o* — o VP )| < o6,

and so

zp — o VF(zp) €Ex" — oy VF(2*)+76B Ca” — ox VF(2")+ opé6B C K.
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Hence ;41 € P(K) = S, for k > k. n

Before proving the next result, we state some second-order conditions and define
some terms:

ASSUMPTION 2. Suppose that Q satisfies Assumption 1 and that there 1s * that
satisfies (2), such that x* € S, where S is a class-C? identifiable surface of Q0 with
p > 2. Suppose that F s twice continuously differentiable in a neighborhood of z*,
and let g;, ¢ = 1,---v be as defined in Definition 2, for y = #* — VF(z*). Choose
A € R such that \* > 0 and

(13) — VF(z") = Vg(a™)A",

and suppose that for all h € Tg(x"),

BT | V2 (2*) + ZA;fv?gi(x*) h > «a|h|)?, for some  «a > 0.
i=1

DEFINITION 3.
(i) &* is a proper local minimizer of F' in Q if there is py > 0 such that

reQ, 0< e —a"|<p1 = F(x) > F(z").

(ii) «* is a stable fized point for (9)-(12) if =V F(x*) € N(x*), and there are
dy >0, dy > 0 such that

[lxo — 27|| < d1 = ||Jor — 27| < da, for all k> 0.

(iii) «* is a stable local attractor for (9)-(12) if it is a stable fired point, and
dy > 0 can be chosen so that

[lxog —2"|| < dy = lim zp = 2.
k—o0

THEOREM 3.2. Suppose that Assumption 2 holds. Then
(i) there are positive scalars py and oy such that

zeQ |z —2"|| < p1= Fx) = F(z*) > aq|x — x*||2;
(ii) there are positive scalars ps and ag such that
€S, |lx—2"| <p2 = |lo = Ple — VF(2))]| > asle — 27,

that is, the defect E(x) = & — P(x — VF (&), restricted to S, has an isolated
zero at x*;
(iii) given any & > 0, there is p3 = p3(&) > 0 such that

[l —2*|| < p3, 0 €[7,1] = P —oVF(x)) €S

(iv) * is a stable local attractor for the gradient projection algorithm, and the
sequences {ay} thal approach x* eventually enter and remain in S.
Proof. Throughout the proof, let € denote e(x* — VF(2™)).
(i) We show first that if w = Vg(2*)u with Vg;(z*)Tw < ¢y forey > 0andi =1, -, 7,
then there is some 7 > 0 such that

(14) VF(J:*)Tw > n||wl|] + O(er).
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Using the definition of A* from Assumption 2, we have
VF( ) w NI g(x*) ' V(e )
(min A7) ||Vg(2™)" V(" )pl| + O(er).

v

Since Vg(z*) has full rank, and ||g|| > ||w||/||Vg(x*)||, there is T2 such that

T2
IVg(2™)" Vg(a )l > ol lpll > mo=—[lwll.
IV g ()]
By setting
C ok T2
T = (m}n/\i)i* ,
i IV g ()]

we obtain (14).
Now, given z in the vicinity of z*, we seek vectors v € R* and u € R" such that

v+ Vg )y = z—2"
(15) g(z*+v) = 0.

We can again apply the implicit function theorem to (15) to find p; > 0 such that a
solution v, p exists for ||z — || < p1. Moreover, g1 can be chosen small enough that
[|[v]] < €, and hence z* + v € S C Q. In follows that, since Vg;(#* +v) € N(z* + v)
fori=1,---,r, and since x € 2,

Vgi(e* +0) [z — (z* +0)] <0, i=1,---,r
Writing w = Vg(2™)pu = # — (¢* + v), we have
Vsl = Vil + 0)Tw -+ O(lellwll) < O(lellfwl), i=1,-,
Application of (14) shows that
(16) VF@)w > nlell + Oolef)).
Now consider the v component. Since z* + v € S, and since (13) holds,
Pt +0) = F) = [P +0) + 3 Tga” + )] - [F(e") + X Tg(e")

v

VIF(x* + Biv) + Z NiV2gi(a* + Biv)

i=1

(17) = %UT

for some B € (0,1). Since Vg;(z*)Tv = O(||v||?), we can choose ps € (0, py1] such
that when ||z — 27| < p2, v is close enough to Ts(x*) and ||v|| is small enough that
o | VAP (2% 4 Brv) + Z NiVigi(2* + Biv)

i=1

«
v > Sl

for all 51 € [0,1]. Hence, from (17),

(18) (e +v) = F(a%) 2 Zlloll”
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By using (16) and (18), we can now write that, for x € QN (z* + p2 B),
Fle)y—F(z*) = Fa'+v4+w)—F"+v)+F(x" +v)— F(z")
= VF@) w+O(|lollllwll + [[w]l) + F(e* +v) = F(z")
a
millell + ol + Olefllwll + [holl?)

\Y

(19)

where ¢y > 0 i1s some constant. Now, choose a constant é; > 0 such that

v

«
mllwll + ol = cadlellllell + [lwll®),

(20) e2(87 +61) < 3

and define p1 € (0, p2] such that both of the following conditions are satisfied:

21 reQn(z"+pB) = ||lvu| < ——ror,
(21) (@ 1) = ol < 50
4 61(1 46
(22) p1 < M
a
In the case [|Jw|| > é1||v||, we have
. 1
(23) llz = 2| < [lwll+ [lvf] < (1 + g)||w||~
Also, from (19),
. 1
(24) F(z) = F(2") = m|lw|| — e2(1 + g)||w||2~
Now, from (21), (23) and (24), we have that
F@) = ) 2 2l 2 5l = o) > 5 e —

for € QN (z* + p1 B). Application of (22) yields that

(25) Fae) = F(z%) 2 mllx—x*|lz~

In the remaining case ||w|| < é1||v[|, we find from (19),(20) that
F(a) = P&") 2 ol = co(6? + )l 2 Sl
Also,
llz = 2"[] < [Joll 4 [Jew]] < (1+61)]Jv]],

and hence (25) still applies. The result follows by setting

«

8(1+61)%

(e —
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(ii) By setting y = «* — VF(2*) in Lemma 2.2, we can choose § € (0,¢] such that
P(z* —VF(2*) 4+ 6B) C S. Now, there is a p; € (0, €] such that
lz —2"|| < o1 = [[[z = VF(2)] = [" = VF(@")]|| < 6,

and hence & = P(x — VF(z)) € S. By contractivity of P(.), ||z — z*|| = ||P(z —
VF(z))— P(x* = VF(x"))| <6 < e Tt therefore follows from Definition 2 (v) that &
solves the projection subproblem

1
(26) min |2 — (¢ = V()| Gi(#) =0, i=1, 1

When ¢ = z*, then & = z*, and (13) holds. By the implicit function theorem,
P2 € (0, p1] can be chosen small enough that there is A such that in fact

(27) lo — 27| < p2 = [¢ = VF(2)] — 2 = Vg(2)A,
with
|z — ="l = O([]x — =), |A = A" = O[]z — =7[]), A>0.

Since ||# — 2*|| < p1 < €, we also have by Definition 2(v) that ¢;(#) =0,i=1,---,r

Let Z € R**("=") be an orthonormal matrix whose columns span the subspace
Ts(z*). By using a Taylor series expansion of ¢ about #*, it is easy to show that there
are vectors 17,7 € R"™" and ¢, ¢ € R such that

(28) r—x" = Zn+ Vg(x")(,
(29) x—i = Zij+ Vg,
where [|¢]| = O(||lz — 2*||*) and [[¢[| = O([Jx — =*[|?) + O(||& — =*||?) = O(||x — z*||*).

From the second-order conditions, and boundedness of VZg; in a neighborhood of z*,
there exists a constant ¢s > 0 such that

(30) ' 2T | VPF (2 +ZA Vigi(e > ol

(31) Z7 |1+ ZA?VZgi(l‘*) Zn| < eallnll,
i=1

for all n € R*™". Tt follows trivially from (30) that

(32) 127 | V2P (a) + ZA Vgi(a™) | Znll > ol

Now, from (27),

r—z = VF(x)+ Vg(z)A
= x—& = VF(x)+ Vg()X" +[Vg(&) — Vg(x)]A+ Vg(x)[A = ]
= z—& = |VF(Y)+ Z V2 (M) | (2 —27) +

ZA V2gi( ) (@ — )+ Vg(a")A = X+ Ol — 2*|]?),
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for (1) € [z, 2*] and «® € [#,2]. Premultiplying this equation by Z7, and using
(28) and (29), we obtain

2T 14 Y0, MV2gi(e))] [ 25+ V()]
= ZT [V2F(eM) 4+ 3202 A Viga(eM)] [Zn+ V(2 )] + O(lle — 2*|]?).

Now, from (31) and (32), we can choose g3 € (0, p2] small enough that, for ||z —2*|| <
ﬁSa

2e5llil] > |27 |1+ 3 MVi(?)| Zj
i=1
N * o
> O([l<Ih) + o(lclh) + O(l|z — = ||2)+§||77||~
Since
lall = lle = 2l + O(lJe — «*|*),
Inll = llz —=2*|| + O(|x — =*[]*),

there is a constant ¢z > 0 such that

N «
2eolle—al] > Slle—27l| - eslle — 2"
oo fe—dll > - |1 22—
xr—x —_— xr— X — — ||l — .
—  4es o

Now, choosing p2 = min(ps, o/(4¢3)), the desired result follows, with oz = a/(8¢2).
(iii) The proof of this part is identical to that of Theorem 3.1, and hence is omitted.

(iv) This follows from Theorem 2.1 of Dunn [3], after we make the following observa-
tions. Part (i) of this theorem implies that z* is a uniformly proper local minimizer
of Fin . The fact that F € C? in a neighborhood of z* means that it is possible
to choose a & € (0,1) such that, for xj is in this neighborhood, any o satisfying
(10)—(12) lies in [&, 1]. ]

We turn now to Newton-like methods for (1). Here, an initial iterate zg € Q
is chosen, and for each & > 0, the following subproblem is solved to find a search
direction py:

. 1
(33) min V F(2)" pi + 5pi Bipe, z +pr € Q.

k
A steplength o € [0, 1] is chosen, usually with the help of some “sufficient decrease”
criterion, and the next iterate is obtained by setting

(34) Tpy1 = X + O Pk

A simple result, similar to Theorem 3.1, follows:
THEOREM 3.3. Suppose that
(i) Assumption I and (2) hold at some point x*;
(ii) VF(x) is continuwous at x*;
(iii) «* € S, where S is some class-C? identifiable surface of Q with p > 1; and
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(iv) xp — ™ and p, — 0 as k — oo, and {||Bi||} is bounded.
Then xy 4+ py € S for all k sufficiently large.

Proof. As in Lemma 2.2, we can find a set K C R"\Q with P(K) C S, and a
scalar 6 > 0, such that

¥ = VF(z")+ 6B Cint(K).
First-order conditions for (33) are that
—VF(2r) — Brpr € N(xx +pi) < 2+ pr = P(ex + pr — VF(2r) — Brpr).

Now,

1@k + i = VF(2r) = Bepe) — (27 = VF(27))]
< ek = @[+ [[VF () = VE@)| + 1+ [ BelDllpx]-

We can choose k large enough that, for k& > k, the right-hand side of the above
inequality does not exceed 8. Then zj 4+ p € 5, as required. ]

Finally, we prove a capture and convergence result for Newton’s method, which
makes use of the second-order conditions in Assumption 2.

THEOREM 3.4. Suppose that Assumption 2 holds and that, in addition, V> F(z)
is Lipschitz continuous in a neighborhood of x*. Let By, = V*F(xy) in (33). Then
there are positive constants py and ay such that, if xo € QN (x* + paB) and o, = 1
for all k > 0, then the algorithm (33),(34) generates a sequence {xy} such that

[|ep+1 — 27| < auller — ar:’"||2 for all k> 0.

In addition, xp, € S for all k sufficiently large.
Proof. The proof rests on a result of Sachs [9, Theorem 2.1]. To apply this result,
we need only show that, for some positive constants p; and aj,

1
(35) inf VF() (2 —2*)+ —(x — ) V2P (2*)(x — %) > a7,
e — )| > 7, ?
reQN(z*+ mDB)

for all 7 € [0, p1).
Choose p; small enough that
e I is twice Lipschitz continuously differentiable on the open ball {z | ||z —
z*|| < 2p1}, and V2F has Lipschitz constant L; and
e if a1, p1 are the constants from Theorem 3.2(i), then p1 < min(py, a1 /L).
Now, for 7 € [0, p1) and # such that

$EQ, plZ||$_$*||ZTa
we obtaln
1
VF(x*)T(x —z")+ 5(1‘ — x*)TVZF(x*)(x — ")

1
> F(z) = F(@") = ;Lllz = 2"|]°

\Y

L
> o= 3 lle=2"l] llz = 2|
> a2,

\Y
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where the second inequality follows from Theorem 3.2(i). Hence (35) follows by setting
a1 = a1 /2. Applying [9, Theorem 2.1] with

a = 071a

l
h

(.
S D
- =

{o ||z — ™[] <201},
= QN (2" +/B),

T < 9 x =
1

we obtain the desired result, with

A 3L
pa= IR PL 377 ) M= 950

(Note that [9, Theorem 2.1] continues to hold when & = 0.) The final statement in
the theorem follows from Theorem 3.3. [
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